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Let a plane-parallel stream of a viscous compressible fluid with velocity 
Ia_ = const flow toward a fixed body which is symmetric with respect to 
the flow direction. At large distances from the body in the wake the 
pressure is approximately constant in transverse sections of the wake, 
the transverse velocity is small in comparison with the longitudinal 
velocity and the rate of change of the longitudinal velocity along the 
axis of the wake is small in comparison with its rate of change in the 
transverse section. Therefore, in an unbounded fluid, the pressure 
gradient along the axis of the wake is negligibly small. Then we have 
the following basic equations: 

(1) 

(energy equation) (2) 

q$ + _d_&._ - 
a(rJu) -0 ( cant inuity equation) 

Pt = Pm& (equation of state) 

(3) 

(4) 

Here the coordinate r lies along the axis of symmetry, u, v are the 
components of the fluid velocity along the coordinate axes, p is the 
fluid density, p the viscosity, t the temperature, Cp the specific heat 
at constant pressure, & the coefficient of thermal conductivity and J 
the mechanical equivalent of heat. The subscript 4 denotes parameters in 
the undisturbed flow. We assume that 
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c, = const, m (0~ = const) (5) 

In this case the energy equation can be integrated (Crocco): 

a 
f== n+u,-,gJ 

(6) 

where A and B are undetermined constants. We introduce the stream func- 
tion by the formulas 

and change variables from X, y to x, $* We have 

Then Equation (1) assumes the form 

At large distances from the body in the wake u = a, + al, v= Ul’ 
where ~1, u1 are small. Confining ourselves to the main terms, we have, 
instead of (7) 

all, 
P ---==u cn d.c (8) 

We introduce the dimensionless quantities by the formulas 

Here L is a characteristic dimension. By virtue of (4) and (5) 

Then (8) assumes the form 

au, a au -=_ 
ax ay Tm-l w, I\ (9) 

This equation admits an analytical solution if IR = 1. In this case 

The boundary conditions for Equations (1) to (4) are 
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From this 

ul=o for Y=w, !!g=o for y=o (12) 

if the axis of symmetry is taken as the streamline $= 0. 

We enclose the body in some control volume AA,BIB, so chosen that AB 

and A,B, lie at a large distance h from the body in the undisturbed flow 
and are parallel to the undisturbed flow velocity, AAl lies ahead of the 
body in the undisturbed flow and perpendicular to its velocity and BB, 
lies behind the body and parallel to AA1. 

The total momentum flow across the control surface equals 

h 

s 
puwfs/ 

-h 

If D is the drag per unit thickness of the obstacle, then by the momentum 
theorem 

‘I co CG 
13= 

s 
puuidy, or D;== 

s 
pug1 dy U,dut (131 

-h -CO 

Replacing f h by f I*) is permissible since UI = 0 for { yI > h. 

(44) 

where C and q are constants. Then 
03 

Dh 
!_ 

X9 3-g (c) 4 

But D is a constant quantity. hence the integral must be independent 

of X. Consequently. q = - l/2. Then by (14), we have 

and instead of (10) we have 
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The boundary conditions are 

g’-0 for g-=0, g-0 for s+co ($7) 

Integrating (16) twice, and taking into account the boundary condi- 
tions, we obtain 

g=exp -;c2 ( > 
The constants A, B and C are determined from conditions at infinity 

(ll), Equation (13) if D is known and from the theorem of energy change 

applied to the contour AAIBIB. The temperature t is determined from 

Formula (6), and the density p from Equation (4). 

The analogous problem for incompressible fluids was solved by Tollmien. 
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